Of Whales and Women: The Importance of Nature in Culture and Culture in Nature

granny_orca
J2 or “Granny”, an orca estimated to be 80-105 years old, who has been post-reproductive for over 40 years.

A recent documentary broadcast on Radio 4 presented by Victoria Gill no doubt sparked a recent editorial in The Guardian on the topic of the increased post-fertility lifespan, the menopause, in orcas. The documentary followed Darren Croft of the University of Exeter and Daniel Franks of the University of York and other studying the Southern Resident orca clan, which boasts a number of older female orcas who have survived well after their reproductive years have ending, including J2 or “Granny” who had her last calf in the 1960s and is still swimming at somewhere between 80-100+ years old today. This is similar to the menopause seen in women today, and in only a single other mammal species, the short-finned pilot whale. The phylogenic oddity of the menopause, appearing not in our close relatives the chimpanzee but in animals with very different evolutionary histories and habitats to us is enough alone to spark a inquiring scientist to investigate how the menopause evolved.

Furthermore, under an earlier and more narrow definition of evolutionary fitness, the menopause has been seen to be evolutionarily inexplicable. An understanding of the reproductive success of an individual as increasing the frequency of their alleles in subsequent generations means that suddenly stopping reproducing seems the exact opposite of a trait that evolved by natural selection. But Croft and Franks argue in this programme that the orca menopause did evolve by natural selection in part due to the post-reproductive females taking care of their adult sons they already have rather than pushing out as many kids as possible. This therefore increasing the number of their sons’ children surviving to breed and so on, so her genes increase in frequency in the population. Rather than increasing her own personal reproductive fitness, the post-reproductive orca uses her sons to increase the frequency of her genes in the population. This account is not particularly revelatory, it is an application of W.D. Hamilton’s ideas of inclusive fitness applied to a particular case.

However, in The Guardian editorial, the author argues that research into the evolution of any trait in any non-human animal is irrelevant to human society and attempts to infer “what constitutes a well-ordered society”, in this case the value of older women in a society, from facts about how a trait has evolved is dangerous. But such a wholesale dismissal of the cultural importance of an understanding of the evolutionary basis does not accomodate the view of biology and nature having a dialectic materialist relationship, the phenomenon of gene-culture coevolution which has been proposed to occur in both humans and several whale species notably including the orca. In the scientists studying animal culture, culture is considered to be behavioural practices transmitted through a population through social learning and not genetic inheritance, this is the lowest common denominator definition of culture and not as intricate as human culture, but significant none the less. By the gene-culture coevolution model, as Hal Whitehead and Luke Rendell describe in The Cultural Lives of Whales and Dolphins, the two streams of information in a cultural species, the genetic and the cultural, can interact. Whilst, as E.O. Wilson termed it, “genes hold culture on a leash” as our culture cannot reach beyond the limits of our biological limits, the favouring a behaviour by a culture, such as adult milk drinking in humans, can lead to the natural selection of genes allowing the most successful use of a cultural trait, which is why the frequency of genes for lactose tolerance is highest in pastoral populations.

Using an understanding of gene-culture coevolution, we can try to understand the evolutionary origins of our cultural practices, or most likely how the biological capacities to develop such cultural practices arose. Indeed, in the orcas the menopause may be one of the key elements in allowing the orcas to transcend the realm of purely genetic inheritance and learn socially and so develop their own culture.

As Whitehead and Rendell discuss, the menopause may have evolved as a means of preserving cultural knowledge. The older females are saved by the menopause from the risks of increasingly infrequent pregnancy at the age of 40 or older and so can live into their 80s and older. These grandmothers play an important role in helping raise children, especially in systems which Sarah Blaffer Hrdy describes as cooperative breeding, where the child is reared by a large extended family of parents, aunts and uncles, siblings, grandparents etc., the proverbial village it takes to raise a child, which she believes is likely the social organisation of early humans.Additionally, these older members of the (human) group will have amassed a great knowledge of the environment over time, which is very useful if a group is blighted by famines every 60 or so years and have to turn to alternative food sources, the knowledge of their edibility is preserved in the mind of the oldest grandmothers. Thus, cultural transmission of information may rely on these elders to preserve information, as in non-literate societies there is no way of preserving cultural information like DNA preserves genetic information, and applied to the early humans as to orcas. We look to orcas to give us clues as to how the human menopause evolved in part because of one of the key philosophical drivers of Darwin’s work, the principle of the consilience of inductions, as termed by William Whewell. By this, the power of a theory increase the more domains of empirical evidence it can explain. This is way Darwin bolstered this theory of evolution by natural selection using examples drawn from biogeography, embryology, behavioural instinct and the fossil record, and why modern menopause researchers use the evidence from orcas to increase the explanatory power of their theories. Crucially, the vast differences between women and whales, not least of all the lack of medical care received by the 80+ orcas, means that the menopause cannot be a pathological state in the orcas as their extended lifespan relative to the males cannot be explained by longevity alone. And explaining how the menopause evolved and therefore shows its advantages in a past environment, rather than dismiss as a pathological aberration of living longer, like Alzheimer’s disease, as some would argue, cannot be a dangerous thing.

I sense that I may be accused of spinning another “very interesting” evolutionary story, which has no relevance to human values and society now. But this society and values are supported by biological and social structures which have evolved, and upon which we have built our complex ethical and social systems. But we did not imagine these systems out of thin air a few thousand years ago, they have a long a gradual pre-history. We eventually had an explosion of social complexity in humans when our culture began to “rachet”, to become increasingly more complex as we built upon the knowledge of others, we stood on the shoulders of giants. It would be intellectually dishonest to refuse to try to encompass politically charged phenomena under an evolutionary frame-work if we call ourselves modern biologists, especially one so counter-intuitive as the menopause, in humans and in orcas. Indeed, not giving an accurate account of the origins of the menopause, gives power to those who would like to dismiss the menopause as pathological and showing womens’ inherent inferiority. Understanding the events of your body as having been selected for in evolutionary time for the advantages it brought your genes can only help understand and learn to value how you experience life. As Croft mentions in the radio programme, many menopausal women draw strength from learning of the menopasual orcas, as it shows “the important of older females in society really valued that story [and] empowered them to think what might be their role in society”. Revealing the evolutionary importance of a trait, thorugh comparison with those who also share this trait across the animal kingdom, can lead us to consider whether our social prejudices are the only way to be, and whether we could reassess our values in light of this.

I believe some of the confusion on these issues are draw in part from the different meanings of the word “value”. The evolutionary biologists uses the concept of evolutionary value as how a trait performs in a cost-benefit analysis in terms of the survival of the organisms. In contrast, value is used most commonly to refer to ethical values, which I will argue are mostly socially determined, though by the laws of causation these must have some sort of basis within the limits of biological possibility. Therefore the science vs. humanities debate comes to its apotheosis. Critics may claim that biologists equate is with ought, that what had the greatest evolutionary value in the human past is what we should value ethically today. I disagree with this position, but doing so does not mean that we should ignore the role of biology in being the basis from which culture springs, but something which does not tether all its ties to biology, as it can reach down and change it biological basis. Life is dialectic; never anything but subtle and dynamic.

 

 

 

 

 

Phallocentric Fallacies: On Gender Bias in Science

In the media and in the science classroom, it is common to hear the lamenting of the lack of women in science at the highest level. This is made evident in the statistics, such as the 12.8% of the STEM workforce in the UK being women as of 2014. The world over and in the majority of scientific disciplines, women are conspicuously absence at the highest level. Most agree that this is not due to women’s inherent inability to do science or their lack of ambition to do anything but raise their children. Therefore the gender disparity at the leading edge of scientific research and innovation is often bemoaned as a shameless waste of talent. In such an example, Athene Donald explores the phenomenon of girls interested in physical sciences being subtly or unsubtly discouraged from taking A-Level Physics and being “lost” from the path to a career in physics or engineering. Donald argues that such a phenomenon is harmful to the economy, as to simply maintain the status quo in terms of science industries in the UK, we need 10,000 more STEM graduates than we had graduating as of 2012, according to the Royal Academy of Engineers.

I don’t deny that women aren’t needed to make up the numbers of competent STEM professionals if we hope to expand STEM industries. Furthermore, I agree with Donald that it reflect poorly on an intellectual culture if those who are academically able and motivated to pursue a field of interest are discouraged from doing so for reasons unrelated to their ability.

However, these arguments apply to encouraging anyone who has the merely inkling of interest in science to pursue it in the educational systems, so are not in principle incompatible with having the upper echelons of scientific institutions filled with men of a particularly narrow social slice if this is how the dice have fallen in terms of interest.

But I will argue that women, as well as everyone else who isn’t of the demographic which has been historically the definition of a scientist; the middle-class white European man, have more to offer science than just another pair of hands.Though science aims to be objective it is inescapably subjective as it is done by human beings with subjective experiences. We gain our subjective biases through how we experience our lives in our society, these background biases act as “blinkers” and inevitably limit our outlook on the ever elusive truth of reality. This narrowing is not out of stubbornness to see reason, as the perjorative use of “blinkers” entails, but means it is very difficult to see otherwise. As Elizabeth Anderson writes in Feminist Epistemology: An Interpretation and a Defence: There is no reason to think our presently cramped and stunted imaginations set the actual limits of the world, but they do set the limits of what we now take to be possible.”

Those who have very similar experiences due to their similar social backgrounds are likely to have similar “blinkers” and similarly narrow outlooks, which becomes the status quo. As Anderson writes: “A scientific community composed of inquirers who share the same background assumptions is unlikely to be aware of the roles these assumptions play in licensing inferences from observations to hypotheses, and even less likely to examine these assumptions critically.” In contrast, those who have different experience and interests through being socialised differently will have their own slightly different set of blinkers and fields of vision of reality slightly askew from the status quo.

Science done by those with very similar life experiences, such as coming from the same social class, same country, same educational background, same sex-class and so on can be very fruitful, I do not deny the achievements of the Enlightenment, but this can only go so far. The introduction of someone with different backgrounds, such as that of being a woman in a patriarchal society, into a field previously dominated by androcentricism, the centring of the male means that she brings with her a different set of subjective biases about the field, so her blinkers are slightly offset to those of her male colleagues and she may have an outlook subtly different, and may encompass a patch of reality the men have so far missed. By contrasting ideas developed by those with divergent outlooks, scientists in the field should then conduct experiments to work out which idea matches reality most closely, and therefore help edge science ever closer to the truth.With such similar subjective biases, a field can only go so far until old hypotheses become rehashed again and again until the empirical evidence relevant to them is exhausted. But using her subtly different outlook onto the world, the female scientist may be able to come up with an innovative hypothesis which after sufficient empirical corroboration may be a theory which comes closer to reality than male scientists with their own particular outlooks have until then been able to.

My focus here will be on the use of what Anderson describes as gender symbolism, “which occurs when we represent nonhuman or inanimate phenomena as masculine” or feminine” and model them after gender ideals or stereotypes.” I will use a historical example of this where gender ideals are mapped onto a biological phenomenon where in fact no sound evidence of it’s existence is found, a true phallocentric fallacy where the masculine is seen where it does not exist. The episode which sparked this articles comes from a particularly obscure branch (or hypha) of biology: fungal reproduction.

As Nicolas P. Money writes in Mushroom, 19th century mycologists were very interested in the topic of fungal sexual reproduction, though the difficulties of studying the phenomena meant that, whist most specialists seemed to favour “the gentle fusion of colonies”, no experimental data nor a mechanism for this was proposed. However, during the First World War, Worthington G. Smith (1835-1917) proposed that he had observed through his microscope mushrooms producing sperm cells, which were ‘ejaculated’ onto the spores in the soil. Smith’s observations are flawed on two fronts. Firstly, he seems to have struggled to see these sperm cells, writing that “At first it requires long and patient  observation to make out the form of these bodies satisfactorily, but when the peculiar shape is once comprehended, there is little difficulty in correctly seeing their characteristic form.” It sounds rather like to see these cells, you must know what to look for, so you see what you know. But his most egregious mistake was to hydrate his samples with the shocking non-sterile “expressed juice of horse dung”, no doubt containing sperm-like amoeba. However, it is highly likely that due to his experience as a man in the patriarchal Victorian society Smith could only imagine sexual reproduction to occur by the forceful ejaculation of the active male sex cells onto the passive female sex cells, a clear projection of the gender symbolism of Victorian society onto the natural world. His blickers contributed to the poor quality of his science, as he did not or refused to acknowledge the contaminating effect of the horse dung on his samples so certain his results were correct.

In contrast, the young graduate Elsie Maud Wakefield (1886- 1972) appears to me to be the model of the “New Woman”, a graduate of the then all-women’s Somerville College, Oxford. Though information on her biography is sparse, as a woman in the late 19th century and early 20th century she would likely have been aware of ideas about human sexual relations being more mutualistic and equal than the Victorian ideals of male dominant courtship, such as those later expressed in the work of Marie Stopes. Whether she adhered to these political values or not, she would have been better able to imagine a non-phallocentric natural world which Smith could not. Therefore, her subjective ‘blinkers’ were different enough from those of Smith’s that she was able to conduct her experiments on fungal reproduction without the phallocentric assumptions of the active male sperm and passive female spores.

Wakefield conducted a series of experiments which demonstrated the necessity of the fusion of the mycelium, the fungal ‘roots’, to produce mushrooms in the Basidiomycete fungi, with no role for mobile sperm cells. But as Wakefield discovered, the nuclei of the two colonies don’t immediately fuse when the colonies fuse, instead the fused colony grows and forms mushrooms with the two, unfused nuclei inhabiting every cell. Nuclear fusion, the event which occurs in animals when sperm meets the egg, only occurs in the mushroom just before spores are produced. Neither colony engaged in sex takes on an ‘active masculine’ or ‘passive feminine’ role which the Victorian Smith expected to find in society and in nature, and so the phallocentric system of gender symbolism breaks down.

I do not claim that women are able to tap a magical reserve of female knowledge gained purely by virtue of having a female body. This sort of crude gender essentialism only aids in cementing differences. Instead, I argue that simply because no two people can ever occupy the same position in time and space, each person’s subjective experience of reality will be slightly different from that of others, and so will have different background assumptions and interests when entering science, including biases based on being socialised as a woman or a man. Instead a shuffling of subjective, gender biased perspectives is where real scientific innovation and the hope of objectivity can be found. As Anderson writes, “Each individual might be subject to perhaps ineradicable cognitive biases or partiality due to gender or other influences. But if the social relations of inquirers are well arranged, then each person’s biases can check and correct the others’.In this way, theoretical rationality and objectivity can be expressed by the whole community of inquirers even when no individual’s thought processes are perfectly impartial, objective, or sound.”